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LE'lTER TO THE EDITOR 

Invariants of particle motion in one-dimensional 
t ime-dependent potentials 

H J Giacominit 
Laboratoire de Magnitisme des Surfaces, Universiti Paris 7, 2 Place Jussieu, 75251 Paris 
Cedex 05, France 

Received 2 July 1990 

Abstract. We consider in this work one-dimensional time-dependent Hamiltonians of the 
form H = p 2 / 2 +  V ( q ,  1 ) .  It is shown that the potentials determined in an implicit way by 
the relation Q( V) = ( a ,  V2+ a,V+ a 3 ) f  + q, where Q is an arbitrary function and a,,  a2 and 
a3 are arbitrary parameters, admit a single-valued constant of motion. This constant of 
motion is a higher transcendental function in the momentum. 

In the last few years, considerable attention has been devoted in search of constants 
of motion for time-dependent Hamiltonian systems (see, for example, references 
[l-261). The search has been motivated both by an interest in understanding the 
structure of dynamical systems and by the possibility of applying exact invariants in 
subjects like plasma physics or quantum theory. 

We consider in this work, one-dimensional Hamiltonians of the form 

H =;p2+ V(q, t )  (1)  
where the potential V(q,  t )  may depend explicitly both on the coordinate q and the 
time t. By the term invariant (or constant of motion) we mean any function that is 
constant along phase-space trajectories of the motion. That is, a function I ( q ,  p,  f )  is 
an invariant for a Hamiltonian H ( q ,  p ,  t )  if it satisfies the condition: 

Invariants of Hamiltonians of the form (1) are often very important in plasma 
physics when the description of the plasma system can be reduced to an equivalent 
one-dimensional problem. The equation ( 2 )  for the invariant is precisely the Liouville 
equation (known in plasma physics as the collisionless Boltzmann equation or the 
Vlasov equation). In the plasma context, I ( q ,  p ,  t )  has the interpretation of a particle 
distribution function in the phase space [27]. 

The invariants of the classical Hamiltonian (1) can also be used to obtain exact 
solutions of time-dependent quantum mechanical problems. The invariant I then 
becomes an invariant quantum mechanical operator with eigenvalues that are constant 
in time. The first such solution was given by Lewis and Riensenfeld for the time- 
dependent harmonic oscillator [28]. Moreover, the Feynman propagator of the quantum 
problem can be written in terms of the eigenfunctions of the invariant I, as has been 
shown in [29]. 
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In general, solutions of the equations of motion associated with Hamiltonian ( 1 )  
present chaotic behaviour. In contrast, for the special class of potentials that admit a 
single-valued constant of motion, the solutions of the corresponding dynamical 
equations will be regular and amenable to an analytical description, especially with 
respect to their asymptotic long-time behaviour. 

From this point of view, the characterization of potentials that admit a single-valued 
invariant is equivalent to determining the Hamiltonians that present regular (non- 
chaotic) trajectories in phase space. 

Methods that have been used for deriving invariants of Hamiltonian systems, as 
given in ( l ) ,  include Noether’s theorem, the Lie theory of extended groups, the theory 
of canonical transformations and the direct method. The direct method consists simply 
in making an ansatz about the form of the functional dependence of the invariant 
I ( q ,  p ,  t )  on its arguments and then solving the defining equation (2) for an invariant. 
This method has been the more efficient and the simpler one for finding potentials 
that admit a constant of motion. By applying this procedure, potentials that admit 
invariants which are polynomial or rational functions in the momentum, have been 
found [18,22,24]. 

In this letter, by applying the direct method, we find a family of potentials that 
admit constants of motion which are higher transcendental functions in the momentum. 

Taking into account (1) and the canonical equations of motion 

equation (2) for the invariant can be written as 

aI aI a V a I  - + p - - -  -=oo. 
at aq aq ap (3) 

The problem posed in this work is the following: which are the potentials that admit 
an invariant of the form I (  V,  p ) ,  i.e. a function only of V and p ?  For such type of 
constants of motion, equation (3)  becomes 

a v a i  avar  avar 
--+P-----=O* a t  av aq av aq ap (4) 

It is evident that, in order to ensure the coherence of this equation, the following 
condition must be imposed on the potential: 

d V  av -=f( V )  - 
at  aq 

where f is an arbitrary function. 

[30], we find the general solution of (5): 
By applying the method of characteristics for first-order partial differential equations 

@ ( V ) = f ( V ) f + q  (6) 
where the function CP can be chosen arbitrarily. 

Therefore, expression ( 6 )  defines, in an implicit way, the class of potentials that 
admit an invariant which is a function only of V and p .  When equation (5) is substituted 
in (4), the following equation for I is obtained: 

a i  ar 
av ap  

(f( V )  + p ) - - - = 0. (7) 
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The method of characteristics transforms the problem of solving (7) into the problem 
of solving an ordinary first-order differential equation, given by: 

dV 
-+f( V)+p =o.  
dP 

This equation is not integrable for an arbitrary function f. The more general function 
that enables us to solve (8) is 

(9) f( V) = a, v2+ a, V f  a3. 

For this case, equation (8) becomes: 

E+ U ]  v2+ a2 v + p  + a, = 0 
dP 

which is a particular case of the Riccati equation. By means of the well known change 
of dependent variable 

(10) is transformed into a linear second-order differential equation given by: 

d2u du 
--y+ a2 -+ a,( p + a3)u = 0. 
dp dp 

In order to eliminate the term that contains the first derivative in (12), we make a new 
change of dependent variable defined by: 

after which we obtain 

Finally, by introducing a new independent variable as follows 

(14) is transformed into the Airy equation E311 

x y = o  -_ d2Y 
dx2 

where 

) y (x) = U - - 4 3  - a ;1’3x (:a;l 

and the bracket contains the argument of the function U, 
The general solution of (16) is: 

y(x) = a ,  Ai(x)+ a2 Bi(x) 
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where (Y, and a2 are arbitrary constants and Ai(x) and Bi(x) are two independent 
particular solutions of (16), called the Airy functions [31]. Taking into account 
expressions ( l l ) ,  (13) ,  (17) and (18), we find the general solution of equation ( lo) ,  
which is given by 

-$az(K Ai(x)+Bi(x)) - U ; ’ ~ ( K  Ai’(x)+Bi’(x)) 
a , (K  Ai(x)+Bi(x)) U P )  = 

where x is given by (15) ,  the primes indicate a derivative with respect to x, and 
K = cr,/a2 is the arbitrary constant of integration of (IO). Following the procedure 
indicated by the method of characteristics, the parameter K must be expressed in 
terms of the other quantities that appear in (19): 

= - (a ,  V + f a 2 )  B i ( ~ ) + a : ’ ~  Bi’(x) 
( a ,  V + f a 2 )  Ai(x) + ail3 Ai’(x) 

Finally, using (20), we can calculate the general solution of (7), with f given by (9) 
( a , V + ~ a , )  B i ( x ) + ~ : ’ ~  Bi’(x) 

Z(q, P, t )  = *( ( a, V+fa2)  A i ( x ) + ~ : ’ ~  Ai‘(x) 
where 
constant of motion, and therefore we can write finally 

is an arbitrary function. But a function of a constant of motion is also a 

(a,V(q, t )+fa2)  B i ( x ) + ~ ; ’ ~  Bi’(x) 
I(qy ” ‘) = ( a ,  V(q, t )  +fa2) Ai(x) + a i’3 Ai’(x). 

It is interesting to analyse the particular case a, = 0. This case cannot be obtained from 
expression (22) by taking a, = 0, as a consequence of the resulting singularity in 
equation (15 ) ,  which defines the quantity x. This particular case can be studied directly 
from equation ( lo) ,  which for a, = 0 becomes 

~ + a 2 V + p + a 3  = o  
dP 

i.e. a linear first-order equation. Its general solution is 

V = K  e-a2P--+--> P l a  
a2 a: a2 

from which we find the constant of motion 

which presents a very simple dependence in the momentum p ,  when compared to the 
general case (22). 

In summary, in this work we have found a family of time-dependent one- 
dimensional potentials, determined in an implicit way by relations (8) and (9), which 
admit a constant of motion given by ( 2 2 ) .  For each function and parameters a , ,  a, 
and a 3 ,  a potential V of this family is determined. The corresponding constant of 
motion is, in the general case, a higher transcendental function in the momentum. 
Invariants that are quadratic functions in the momentum have been used to find exact 
solutions of the Vlasov-Poisson equations in plasma physics [27]. It would be interesting 
to analyse if the invariants that have been found in this work, especially for the case 
u1 = 0, where the p-dependence of the invariant is more simple, could be used to find 
new solutions of the Vlasov-Poisson equations. 
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